Targeted artificial ocean cooling to mitigate tropical cyclones would be futile | Panda Anku

  • Moore, JC et al. Response to Geoengineering in Atlantic Hurricane Floods. Proc. Natl. Acad. Science. United States of America 11213794-13799 (2015).

    CAS article Google Scholar

  • Jones, AC et al. Effects of hemispheric solar geoengineering on tropical cyclone frequency. nat. commune 8thhttps://doi.org/10.1038/s41467-017-01606-0 (2017).

  • Jones, AC et al. Regional climate impacts of global warming stabilization at 1.5 K by solar geoengineering. future of the earth 6230-251 (2018).

    Article Google Scholar

  • Irvine, P. et al. Halving warming with idealized solar geoengineering mitigates key climate hazards. nat. climate change 9295-299 (2019).

    Article Google Scholar

  • Latham, J. et al. Lightening of the sea clouds. philos. Trans. R. Soc. A 3704217-4262 (2012).

    Article Google Scholar

  • Ahlm, L. et al. Sea cloud brightening – as effective as without clouds. The atmosphere. Chem. Phys. 1713071-13087 (2017).

    CAS article Google Scholar

  • Willoughby, HE, Jorgensen, DP, Black, RA & Rosenthal, SL Project STORMFURY: a scholarly chronicle 1962-1983. Bull. Am. meteorol. society 66505-514 (1985).

    Article Google Scholar

  • Robock, A., Bunzl, M., Kravitz, B. & Stenchikov, GL A test for geoengineering? Science 327530-531 (2010).

    CAS article Google Scholar

  • Robock, A., MacMartin, DG, Duren, R. & Christensen, MW Studying geoengineering with natural and anthropogenic analogues. Climate. change 121445-458 (2013).

    Article Google Scholar

  • Latham, J. et al. Brightening of marine clouds: regional applications. philos. Trans. R. Soc. A 372 1-11 (2014).

  • MacCracken, MC The rationale for accelerating regionally focused climate intervention research. future of the earth 4649-657 (2016).

    Article Google Scholar

  • Uram, H. US Patent Application Publication No. 0008155A1. https://patents.google.com/patent/US20020008155A1/en?inventor=herbert+uram&oq=herbert+uram (2002).

  • Kitamura, K. U.S. Patent Application Publication No. 7832657B2. https://patents.google.com/patent/US7832657B2/en?oq=7%2C832%2C657 (2010).

  • Gradle, R. US Patent Application Publication No. 8148840B2. https://patents.google.com/patent/US7832657B2/en?oq=7%2C832%2C657 (2012).

  • Tawil, JJ US Patent Application Publication No. 0038063A1. https://patents.google.com/patent/US20130038063A1/en?assignee=jack+joseph+tawil&oq=jack+joseph+tawil (2013).

  • Bowers, JA et al. US Patent Application Publication No. 8685254B2. https://patents.google.com/patent/US8685254B2/en?oq=8685254 (2014).

  • OceanTherm: https://www.oceantherm.no/ (2021).

  • Emanuel, KA An air-sea interaction theory for tropical cyclones. Part I: Steady State Maintenance. J. Atmos. Science. 43585-605 (1986).

  • Emanuel, KA The Maximum Intensity of Hurricanes. J. Atmos. Science. 451143-1155 (1988).

    Article Google Scholar

  • Miller, BI A study of the infill of Hurricane Donna (1960) over land. Mon. Weather Rev. 92389-406 (1964).

    Article Google Scholar

  • Tuleya, RE Evolution and Decay of Tropical Storms: Sensitivity to Surface Boundary Conditions. Mon. Weather Rev. 122291-304 (1994).

    Article Google Scholar

  • DeMaria, M., Mainelli, M., Shay, LK, Knaff, JA & Kaplan, J. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). weather forecast. 20531-543 (2005).

    Article Google Scholar

  • Hlywiak, J. & Nolan, DS The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Science. 78983-1000 (2021).

  • Cione, JJ & Uhlhorn, EW Sea surface temperature variability in hurricanes: implications regarding intensity changes. Mon. Weather Rev. 1311783-1796 (2003).

    Article Google Scholar

  • D’Asaro, EA, Sanford, TB, Niiler, PP & Terrill, EJ Cold episode of Hurricane Frances. Geophysics. Resolution Latvian. 342-7 (2007).

    Google Scholar

  • Chen, S., Elsberry, RL & Harr, PA Modeling the interaction of a tropical cyclone with its cold wake. J. Atmos. Science. 743981-4001 (2017).

    Article Google Scholar

  • Guo, T., Sun, Y., Liu, L. & Zhong, Z. The influence of storm-induced SST cooling on storm size and destructiveness: results from atmosphere-ocean coupled simulations. J Meteorol. resolution 341068-1081 (2020).

    Article Google Scholar

  • Shay, LK, Goni, GJ & Black, PG Effects of a Warm Oceanic Feature on Hurricane Opal. Mon. Weather Rev. 1281366-1383 (2000).

    Article Google Scholar

  • Mainelli, MM, DeMaria, M., Shay, LK & Goni, G. Application of oceanic heat content estimation to the operational forecast of recent Category 5 Atlantic hurricanes. weather forecast. 233-16 (2008).

    Article Google Scholar

  • Balaguru, K. et al. Effect of sea barrier layers on tropical cyclone intensification. Proc. Natl. Acad. Science. United States of America 10914343-14347 (2012).

    CAS article Google Scholar

  • Hlywiak, J. & Nolan, D. The influence of oceanic barrier layers on tropical cyclone intensity, determined by idealized, coupled numerical simulations. J.Phys. ocean gr. 491723-1745 (2019).

  • Rudzin, JE, Shay, LK & Cruz, BJDL The influence of the Amazon-Orinoco river plume on enthalpy flux and air-sea interaction in tropical cyclones in the Caribbean Sea. Mon. Weather Rev. 147931-950 (2019).

    Article Google Scholar

  • Powell, M. & Reinhold, T. Destructive potential of tropical cyclones through integrated kinetic energy. Bull. Am. meteorol. society 88513-526 (2007).

    Article Google Scholar

  • Klotzbach, PJ et al. Surface pressure is a better predictor of normalized hurricane damage than maximum sustained wind. Bull. Am. meteorol. society 101E830-E846 (2020).

    Article Google Scholar

  • Miyamoto, Y., Bryan, GH & Rotunno, R. An analytical model of maximum potential intensity for tropical cyclones that includes the effect of ocean mixing. Geophysics. Resolution Latvian. 445826-5835 (2017).

    Article Google Scholar

  • US Energy Information Administration. April 2022 monthly energy review. Technical Report 4 (US Energy Information Administration, 2022).

  • Ma, Z., Fei, J., Liu, L., Huang, X. & Li, Y. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensity. Mon. Weather Rev. 1451181-1201 (2017).

    Article Google Scholar

  • Yablonsky, RM & Ginis, I. Influence of the circulation of a warm ocean eddy on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Weather Rev. 141997-1021 (2013).

    Article Google Scholar

  • Feng, EY, Su, B. & Oschlies, A. Geoengineered vertical ocean water exchange may accelerate global deoxygenation. Geophysics. Resolution Latvian. 47e2020GL088263 (2020).

  • Gray, WM Global View of the Origin of Tropical Disturbance and Storms. Mon. Weather Rev. 96669-700 (1968).

    Article Google Scholar

  • DeMaria, M., Mainelli, M., Shay, LK, Knaff, JA & Kaplan, J. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). weather forecast. 20531-543 (2005).

    Article Google Scholar

  • Kaplan, J. et al. Assessing the environmental impact on the predictability of rapid intensification tropical cyclones using statistical models. weather forecast. 301374-1396 (2015).

    Article Google Scholar

  • Foltz, GR, Balaguru, K. & Hagos, S. Cross-basin differences in the relationship between SST and tropical cyclone intensification. Mon. Weather Rev. 146853-870 (2018).

  • Wadler, JB, Zhang, JA, Rogers, RF, Jaimes, B. & Shay, LK The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air-sea interactions. Mon. Weather Rev. 149245-267 (2021).

    Article Google Scholar

  • Gilford, D. dgilford/pyPI: pyPI v1.3 (first package release). https://zenodo.org/record/3985975 (2020).

  • Gilford, DM PyPI (v1.3): Calculations of potential tropical cyclone intensity in Python. Geosci. model developer 142351-2369 (2021).

    Article Google Scholar

  • Hersbach, H. et al. Monthly averaged ERA5 data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Repository (CDS). https://doi.org/10.24381/cds.6860a573 (2019).

  • Nolan, DS Environmental friendliness assessment for tropical cyclone development using the point reduction method. J.Adv. Model. earth system 31-28 (2011).

  • Onderlinde, MJ & Nolan, DS The response of tropical cyclones to changing wind shear using the time-varying point reduction method. J.Adv. Model. earth system 9908-931 (2017).

    Article Google Scholar

  • Lim, JOJ & Hong, SY Effects of bulk ice microphysics on simulated monsoon precipitation over East Asia. J Geophys. resolution atmosphere. 1101-16 (2005).

    Article Google Scholar

  • Zhang, C., Wang, Y. & Hamilton, K. Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke-Cumulus parameterization scheme. Mon. Weather Rev. 1393489-3513 (2011).

    Article Google Scholar

  • Janjic, Z. Non-singular implementation of the Mellor-Yamada Level 2.5 schema in the NCEP meso model. NCEP office note 43761 (2002).

    Google Scholar

  • Edson, JB et al. About the momentum exchange over the open ocean. J.Phys. ocean gr. 431589-1610 (2013).

    Article Google Scholar

  • Chen, F. & Dudhia, J. Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 129569-585 (2001).

    Article Google Scholar

  • Pollard, RT, Rhines, PB & Thompson, RO The deepening of the wind-mixed layer. Geophysics. atrophy. fluid dyn. 4381-404 (1972).

    Article Google Scholar

  • Leave a Comment