Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation | Panda Anku

  • Aggleton, J. P. The Amygdala: A Functional Analysis (Oxford University Press, 2000).

  • Murray, E. A. The amygdala, reward and emotion. Trends Cogn. Sci. 11, 489–497 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Quirk, G. J., Repa, J. C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gaffan, D. & Murray, E. A. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey. J. Neurosci. 10, 3479–3493 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rutishauser, U., Mamelak, A. N. & Adolphs, R. The primate amygdala in social perception—insights from electrophysiological recordings and stimulation. Trends Neurosci. 38, 295–306 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • LeDoux, J. E. & Brown, R. A higher-order theory of emotional consciousness. PNAS 114, E2016–E2025 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Feinstein, J. S. et al. Fear and panic in humans with bilateral amygdala damage. Nat. Neurosci. 16, 270–272 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dlouhy, B. J. et al. Breathing inhibited when seizures spread to the amygdala and upon amygdala stimulation. J. Neurosci. 35, 10281–10289 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rhone, A. E. et al. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 5, e134852 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Drevets, W. C. Neuroimaging studies of mood disorders. Biol. Psychiatry 48, 813–829 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davidson, R. J. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol. Psychiatry 51, 68–80 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828–834 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amaral, D. G. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (1992).

  • Freese, J. L. & Amaral, D. G. in The Human Amygdala 3–42 (The Guilford Press, 2009).

  • Gothard, K. M. Multidimensional processing in the amygdala. Nat. Rev. Neurosci. 21, 565–575 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Doron, N. N. & Ledoux, J. E. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J. Comp. Neurol. 412, 383–409 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Musil, S. Y. & Olson, C. R. Organization of cortical and subcortical projections to medial prefrontal cortex in the cat. J. Comp. Neurol. 272, 219–241 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ottersen, O. P. Afferent connections to the amygdaloid complex of the rat and cat: II. Afferents from the hypothalamus and the basal telencephalon. J. Comp. Neurol. 194, 267–289 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sakanaka, M., Shibasaki, T. & Lederis, K. Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res. 382, 213–238 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sripanidkulchai, K., Sripanidkulchai, B. & Wyss, J. M. The cortical projection of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study. J. Comp. Neurol. 229, 419–431 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nagai, T. et al. From The Basal Forbrain of rat to the amygdala. J. Neurosci. 2, 8 (1982).

    Article 

    Google Scholar 

  • Porrino, L. J., Crane, A. M. & Goldman-Rakic, P. S. Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J. Comp. Neurol. 198, 121–136 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saunders, R. C., Rosene, D. L. & Van Hoesen, G. W. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections: RECIPROCAL CONNECTIONS OF AMYGDALA AND HIPPOCAMPUS. J. Comp. Neurol. 271, 185–207 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stefanacci, L., Suzuki, W. A. & Amaral, D. G. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol. 375, 552–582 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. PNAS 106, 2035–2040 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scannell, J. W., Blakemore, C. & Young, M. P. Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roy, A. K. et al. Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 45, 614–626 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Grayson, D. S. et al. The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91, 453–466 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oya, H. et al. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI. J. Neurosci. Methods 277, 101–112 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Saygin, Z. M. et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage 155, 370–382 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tyszka, J. M. & Pauli, W. M. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template: In Vivo Amygdala Subdivisions. Hum. Brain Mapp. 37, 3979–3998 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Solano-Castiella, E. et al. Parcellation of human amygdala in vivo using ultra high field structural MRI. NeuroImage 58, 741–748 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Bach, D. R., Behrens, T. E., Garrido, L., Weiskopf, N. & Dolan, R. J. Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. J. Neurosci. 31, 618–623 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Saygin, Z. M., Osher, D. E., Augustinack, J., Fischl, B. & Gabrieli, J. D. E. Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. NeuroImage 56, 1353–1361 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Bickart, K. C., Hollenbeck, M. C., Barrett, L. F. & Dickerson, B. C. Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. J. Neurosci. 32, 14729–14741 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T. & Eickhoff, S. B. An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum. Brain Mapp. 34, 3247–3266 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Mishra, A., Rogers, B. P., Chen, L. M. & Gore, J. C. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Hum. Brain Mapp. 35, 1247–1260 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Friston, K. J. Functional and effective connectivity: a review. Brain Connectivity 1, 13–36 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Klink, P. C. et al. Combining brain perturbation and neuroimaging in non-human primates. NeuroImage 235, 118017 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Bachevalier, J. & Loveland, K. A. The orbitofrontal–amygdala circuit and self-regulation of social–emotional behavior in autism. Neurosci. Biobehav. Rev. 30, 97–117 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Shen, M. D. et al. Functional connectivity of the amygdala is disrupted in preschool-aged children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 55, 817–824 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–1372 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Drevets, W. C. Prefrontal cortical-amygdalar metabolism in major depression. Ann. N. Y. Acad. Sci. 877, 614–637 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reynolds, G. The Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfuntion 561–574 (Wiley-Liss, 1992).

  • Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53, 1–15 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Prokhorenkova, L. et al. CatBoost: unbiased boosting with categorical features. Adv Neural Inf Process Syst. 31 (2018).

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2020).

  • Gupta, R., Koscik, T. R., Bechara, A. & Tranel, D. The amygdala and decision-making. Neuropsychologia 49, 760–766 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Cahill, L. Why sex matters for neuroscience. Nat. Rev. Neurosci. 7, 477–484 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tranel, D. & Bechara, A. Sex-related functional asymmetry of the amygdala: preliminary evidence using a case-matched lesion approach. Neurocase 15, 217–234 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values encoded in orbitofrontal cortex are causally related to economic choices. Nature 588, 450–453 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reber, J. et al. Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain 140, 1743–1756 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1, 155–159 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 6, 533–544 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Friedman, D. P., Murray, E. A., O’Neill, J. B. & Mishkin, M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J. Comp. Neurol. 252, 323–347 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shi, C.-J. & Cassell, M. D. Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J. Comp. Neurol. 399, 469–491 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yamashita, A. et al. Generalizable brain network markers of major depressive disorder across multiple imaging sites. PLOS Biol. 18, e3000966 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amaral, D. G. & Price, J. L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buckwalter, J. A., Schumann, C. M. & Van Hoesen, G. W. Evidence for direct projections from the basal nucleus of the amygdala to retrosplenial cortex in the Macaque monkey. Exp. Brain Res. 186, 47–57 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Llamas, A., Avendan˜o, C. & Reinoso-Sua´rez, F. Amygdaloid projections to the motor, premotor and prefrontal areas of the cat’s cerebral cortex: a topographical study using retrograde transport of horseradish peroxidase. Neuroscience 15, 651–657 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parvizi, J., Van Hoesen, G. W., Buckwalter, J. & Damasio, A. Neural connections of the posteromedial cortex in the macaque. Proc. Natl Acad. Sci. USA 103, 1563–1568 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keller, C. J. et al. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. B 369, 20130528 (2014).

    Article 

    Google Scholar 

  • Creutzfeldt, O. D., Watanabe, S. & Lux, H. D. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 20, 1–18 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kobayashi, K. et al. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clin. Neurophysiol. 128, 1673–1681 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cole, M. W. et al. Task activations produce spurious but systematic inflation of task functional connectivity estimates. NeuroImage 189, 1–18 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Cole, M. W., Ito, T., Cocuzza, C. & Sanchez-Romero, R. The functional relevance of task-state functional connectivity. J. Neurosci. 41, 2684–2702 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morecraft, R. J. et al. Amygdala interconnections with the cingulate motor cortex in the rhesus monkey. J. Comp. Neurol. 500, 134–165 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Pandya, D. N., Van Hoesen, G. W. & Domesick, V. B. A cingulo-amygdaloid projection in the rhesus monkey. Brain Res. 61, 369–373 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vilensky, J. A. & Hoesen, Van G. W. Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res. 205, 391–395 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iwai, E. & Yukie, M. Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (macaca fuscata, M. mulatta, and M. fascicularis). J. Comp. Neurol. 261, 362–387 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kilpatrick, L. A., Zald, D. H., Pardo, J. V. & Cahill, L. F. Sex-related differences in amygdala functional connectivity during resting conditions. NeuroImage 30, 452–461 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L. & Goebel, R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 22, 1449–1455 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, Z. et al. Epileptogenic network of focal epilepsies mapped with cortico-cortical evoked potentials. Clin. Neurophysiol. 131, 2657–2666 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schoenbaum, G., Chiba, A. A. & Gallagher, M. Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J. Neurosci. 20, 5179–5189 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mai, J. K., Majtanik, M. & Paxinos, G. Atlas of the Human Brain (Academic Press, 2015).

  • Howard, M. A. et al. A hybrid clinical—research depth electrode for acute and chronic in vivo microelectrode recording of human brain neurons: Technical note. J. Neurosurg. 84, 129–132 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Rocchi, F. et al. Common fronto-temporal effective connectivity in humans and monkeys. Neuron https://doi.org/10.1016/j.neuron.2020.12.026 (2021).

  • Yamao, Y. et al. Clinical impact of intraoperative CCEP monitoring in evaluating the dorsal language white matter pathway: intraoperative Dorsal Language Network Mapping. Hum. Brain Mapp. 38, 1977–1991 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cogan, S. F., Ludwig, K. A., Welle, C. G. & Takmakov, P. Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 021001 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schiavone, G. et al. Guidelines to study and develop soft electrode systems for neural stimulation. Neuron 108, 238–258 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shannon, R. V. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39, 424–426 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abalkhail, T. M. et al. Intraoperative direct cortical stimulation motor evoked potentials: Stimulus parameter recommendations based on rheobase and chronaxie. Clin. Neurophysiol. 128, 2300–2308 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Tehovnik, E. J., Tolias, A. S., Sultan, F., Slocum, W. M. & Logothetis, N. K. Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96, 512–521 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jenison, R. L. Directional influence between the human amygdala and orbitofrontal cortex at the time of decision-making. PLoS ONE 9, e109689 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pagnotta, M. F., Dhamala, M. & Plomp, G. Benchmarking nonparametric Granger causality: Robustness against downsampling and influence of spectral decomposition parameters. NeuroImage 183, 478–494 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Dhamala, M., Rangarajan, G. & Ding, M. Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage 41, 354–362 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Gorgolewski, K. J. et al. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLOS Computational Biol. 13, e1005209 (2017).

    Article 
    CAS 

    Google Scholar 

  • Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thompson, W. H. et al. A data resource from concurrent intracranial stimulation and functional MRI of the human brain. Sci. Data 7, 258 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fischl, B. et al. Whole brain segmentation. Neuron 33, 341–355 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    MATH 
    Article 

    Google Scholar 

  • Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Leave a Comment