Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal | Panda Anku

  • Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tan, G., Zhao, L.-D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Padture, N. P., Gell, M. & Jordan, E. H. Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mukhopadhyay, S. et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 360, 1455–1458 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gibson Quinn, D. et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science 373, 1017–1022 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dutta, M., Samanta, M., Ghosh, T., Voneshen, D. J. & Biswas, K. Evidence of highly anharmonic soft lattice vibrations in a Zintl rattler. Angew. Chem., Int. Ed. 60, 4259 (2021).

    CAS 
    Article 

    Google Scholar 

  • Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shi, X. et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dutta, M., Sarkar, D. & Biswas, K. Intrinsically ultralow thermal conductive inorganic solids for high thermoelectric performance. Chem. Commun. 57, 4751–4767 (2021).

    CAS 
    Article 

    Google Scholar 

  • Beekman, M. & Cahill, D. G. Inorganic crystals with glass-like and ultralow thermal conductivities. Cryst. Res. Tech. 52, 1700114 (2017).

    Article 
    CAS 

    Google Scholar 

  • Agne, M. T., Hanus, R. & Snyder, G. J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ. Sci. 11, 609–616 (2018).

    Article 

    Google Scholar 

  • Kittel, C. Interpretation of the thermal conductivity of glasses. Phys. Rev. 75, 972–974 (1949).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H. & Slack, G. A. Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779–782 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Weathers, A. et al. Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Phys. Rev. B 96, 214202 (2017).

    ADS 
    Article 

    Google Scholar 

  • Liu, Z., Zhang, W., Gao, W. & Mori, T. A material catalogue with glass-like thermal conductivity mediated by crystallographic occupancy for thermoelectric application. Energy Environ. Sci. 14, 3579–3587 (2021).

    CAS 
    Article 

    Google Scholar 

  • Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Roychowdhury, S. et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 371, 722–727 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, J. et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nanotechnol. 8, 445–451 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  • Miyata, K., Atallah Timothy, L. & Zhu, X. Y. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

  • Skoplaki, E. & Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Divitini, G. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 1–6 (2016).

    Article 
    CAS 

    Google Scholar 

  • Herz, L. M. How lattice dynamics moderate the electronic properties of metal-halide perovskites. J. Phys. Chem. Lett. 9, 6853–6863 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Haque, M. A., Kee, S., Villalva, D. R., Ong, W.-L. & Baran, D. Halide perovskites: thermal transport and prospects for thermoelectricity. Adv. Sci. 7, 1903389 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ma, H. et al. Supercompliant and soft (CH3NH3)3Bi2I9 crystal with ultralow thermal conductivity. Phys. Rev. Lett. 123, 155901 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, B. et al. Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3. Nat. Commun. 8, 16086 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gold-Parker, A. et al. Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. Proc. Natl Acad. Sci. USA 115, 11905 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, W. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl Acad. Sci. USA 114, 8693 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, T. et al. Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nat. Commun. 10, 5750 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xie, H. et al. All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity. J. Am. Chem. Soc. 142, 9553–9563 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Acharyya, P. et al. Intrinsically ultralow thermal conductivity in Ruddlesden–Popper 2D perovskite Cs2PbI2Cl2: localized anharmonic vibrations and dynamic octahedral distortions. J. Am. Chem. Soc. 142, 15595–15603 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lanigan-Atkins, T. et al. Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3. Nat. Mater. 20, 977–983 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • McCall, K. M. et al. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron–phonon coupling. Chem. Mater. 31, 2644–2650 (2019).

    CAS 
    Article 

    Google Scholar 

  • Bass, K. K. et al. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9. Inorg. Chem. 56, 42–45 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, C. et al. Remarkably weak anisotropy in thermal conductivity of two-dimensional hybrid perovskite butylammonium lead iodide crystals. Nano Lett. 21, 3708–3714 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sun, B. et al. High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals. Nat. Commun. 11, 6039 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809–813 (2019).

    CAS 
    Article 

    Google Scholar 

  • Yang, R. X., Skelton, J. M., da Silva, E. L., Frost, J. M. & Walsh, A. Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. J. Chem. Phys. 152, 024703 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jana, M. K., Pal, K., Waghmare, U. V. & Biswas, K. The origin of ultralow thermal conductivity in InTe: lone‐pair‐induced anharmonic rattling. Angew. Chem., Int. Ed. 55, 7792 (2016).

    CAS 
    Article 

    Google Scholar 

  • Pailhès, S. et al. Localization of propagative phonons in a perfectly crystalline solid. Phys. Rev. Lett. 113, 025506 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Seyf, H. R. et al. Rethinking phonons: the issue of disorder. NPJ Comput. Mater. 3, 49 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Yang, J. et al. Diffused lattice vibration and ultralow thermal conductivity in the binary Ln–Nb–O oxide system. Adv. Mater. 31, 1808222 (2019).

    Article 
    CAS 

    Google Scholar 

  • Morelli, D. T., Jovovic, V. & Heremans, J. P. Intrinsically minimal thermal conductivity in cubic I−V−VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schirmacher, W., Diezemann, G. & Ganter, C. Harmonic vibrational excitations in disordered solids and the “boson peak”. Phys. Rev. Lett. 81, 136–139 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shintani, H. & Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 7, 870–877 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McCall, K. M., Stoumpos, C. C., Kostina, S. S., Kanatzidis, M. G. & Wessels, B. W. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 29, 4129–4145 (2017).

    CAS 
    Article 

    Google Scholar 

  • Egami, T. & Billinge, S. J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, 2003).

  • Dutta, M., Pal, K., Etter, M., Waghmare, U. V. & Biswas, K. Emphanisis in cubic (SnSe)0.5(AgSbSe2)0.5: dynamical off-centering of anion leads to low thermal conductivity and high thermoelectric performance. J. Am. Chem. Soc. 143, 16839–16848 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, J. et al. Direct observation of one-dimensional disordered diffusion channel in a chain-like thermoelectric with ultralow thermal conductivity. Nat. Commun. 12, 6709 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xia, Y., Pal, K., He, J., Ozoliņš, V. & Wolverton, C. Particlelike phonon propagation dominates ultralow lattice thermal conductivity in crystalline Tl3VSe4. Phys. Rev. Lett. 124, 065901 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xie, L., Feng, J. H., Li, R. & He, J. Q. First-principles study of anharmonic lattice dynamics in low thermal conductivity AgCrSe2: evidence for a large resonant four-phonon scattering. Phys. Rev. Lett. 125, 245901 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ghosh, T., Dutta, M., Sarkar, D. & Biswas, K. Insights into low thermal conductivity in inorganic materials for thermoelectrics. J. Am. Chem. Soc. 144, 10099–10118 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, Y., Ke, X., Chen, C., Yang, J. & Kent, P. R. C. Thermodynamic properties of PbTe, PbSe, and PbS: first-principles study. Phys. Rev. B 80, 024304 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Carrete, J., Mingo, N. & Curtarolo, S. Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett. 105, 101907 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Leave a Comment