Enzymatic upgrading of nanochitin using an ancient lytic polysaccharide monooxygenase | Panda Anku

  • Lin, N. & Dufresne, A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6, 5384–5393 (2014).

    CAS 
    Article 

    Google Scholar 

  • Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Rev. Microbiol. 14, 288–304 (2016).

    CAS 
    Article 

    Google Scholar 

  • Rasor, J. P. & Voss, E. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal. A: Gen. 221, 145–158 (2001).

    CAS 
    Article 

    Google Scholar 

  • Vemula, P. K., Li, J. & John, G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J. Am. Chem. Soc. 128, 8932–8938 (2006).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y., Geary, T. & Simpson, B. K. Genetically modified food enzymes: a review. Curr. Opin. Food Sci. 25, 14–18 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kaczmarek, M. B., Struszczyk-Swita, K., Li, X., Szczęsna-Antczak, M. & Daroch, M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front. Bioeng. Biotechnol. 7, 243 (2019).

  • You, C. et al. Enzymatic transformation of nonfood biomass to starch. Proc. Natl Acad. Sci. 110, 7182–7187 (2013).

    CAS 
    Article 

    Google Scholar 

  • Gaspar, V. M., Lavrador, P., Borges, J., Oliveira, M. B. & Mano, J. F. Advanced bottom‐up engineering of living architectures. Adv. Mater. 32, 1903975 (2020).

    CAS 
    Article 

    Google Scholar 

  • Richter, M., Schulenburg, C., Jankowska, D., Heck, T. & Faccio, G. Novel materials through Nature’s catalysts. Mater. Today 18, 459–467 (2015).

    CAS 
    Article 

    Google Scholar 

  • Peschke, T. et al. Self-assembling all-enzyme hydrogels for flow biocatalysis. Angew. Chem. Int. Ed. Engl. 57, 17028–17032 (2018).

    CAS 
    Article 

    Google Scholar 

  • Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V. & Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydrate Polym. 82, 227–232 (2010).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. et al. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges. Nanoscale Res. Lett. 10, 1–11 (2015).

    Article 
    CAS 

    Google Scholar 

  • Uddin, A. J., Fujie, M., Sembo, S. & Gotoh, Y. Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydrate Polym. 87, 799–805 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kontturi, E. & Spirk, S. Ultrathin films of cellulose: a materials perspective. Front. Chem. 7, 488 (2019).

  • Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222 (2010).

    CAS 
    Article 

    Google Scholar 

  • Agger, J. W. et al. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proce. Natl Acad. Sci. 111, 6287–6292 (2014).

    CAS 
    Article 

    Google Scholar 

  • Beeson, W. T., Phillips, C. M., Cate, J. H. & Marletta, M. A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134, 890–892 (2012).

    CAS 
    Article 

    Google Scholar 

  • Horn, S. J., Vaaje-Kolstad, G., Westereng, B. & Eijsink, V. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5, 45 (2012).

    CAS 
    Article 

    Google Scholar 

  • Villares, A. et al. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci. Rep. 7, 1–9 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fernández-Marín, R. et al. Eco-friendly isolation and characterization of nanochitin from different origins by microwave irradiation: Optimization using response surface methodology. Int. J. Biol. Macromol. 186, 218–226 (2021).

    Article 
    CAS 

    Google Scholar 

  • Muñoz-Núñez, C., Fernández-García, M. & Muñoz-Bonilla, A. Chitin nanocrystals: environmentally friendly materials for the development of bioactive films. Coatings 12, 144 (2022).

    Article 
    CAS 

    Google Scholar 

  • Banerjee, G., Scott-Craig, J. S. & Walton, J. D. Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Res. 3, 82–92 (2010).

    Article 

    Google Scholar 

  • Alonso-Lerma, B. et al. High performance crystalline nanocellulose using an ancestral endoglucanase. Commun. Mater. 1, 1–10 (2020).

    Article 

    Google Scholar 

  • Alonso-Lerma, B. et al. Enzymatically produced cellulose nanocrystals as reinforcement for waterborne polyurethane and its applications. Carbohydrate Polym. 254, 117478 (2021).

    CAS 
    Article 

    Google Scholar 

  • Manteca, A. et al. Mechanochemical evolution of the giant muscle protein titin as inferred from resurrected proteins. Nat. Struct. Mol. Biol. 24, 652–657 (2017).

    CAS 
    Article 

    Google Scholar 

  • Perez-Jimenez, R. et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat. Struct. Mol. Biol. 18, 592–596 (2011).

    CAS 
    Article 

    Google Scholar 

  • Nakano, S., Niwa, M., Asano, Y. & Ito, S. Following the evolutionary track of a highly specific l-arginine oxidase by reconstruction and biochemical analysis of ancestral and native enzymes. Appl. Environ. Microbiol. 85 (2019).

  • Gaucher, E. A., Govindarajan, S. & Ganesh, O. K. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451, 704–707 (2008).

    CAS 
    Article 

    Google Scholar 

  • Garcia, A. K., Schopf, J. W., Yokobori, S.-I., Akanuma, S. & Yamagishi, A. Reconstructed ancestral enzymes suggest long-term cooling of Earth’s photic zone since the Archean. Proc. Natl Acad. Sci. 114, 4619–4624 (2017).

    CAS 
    Article 

    Google Scholar 

  • Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).

    CAS 
    Article 

    Google Scholar 

  • Barruetabeña, N. et al. Resurrection of efficient Precambrian endoglucanases for lignocellulosic biomass hydrolysis. Commun. Chem. 2, 1–13 (2019).

    Article 
    CAS 

    Google Scholar 

  • Thomas, A., Cutlan, R., Finnigan, W., van der Giezen, M. & Harmer, N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun. Biol. 2, 429 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zakas, P. M. et al. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat. Biotechnol. 35, 35–37 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zhang, H., Zhao, Y., Cao, H., Mou, G., & Yin, H. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. Int. J. Biol. Macromol. 79, 72–75 (2015).

  • Lacombe-Harvey, M.-È., Brzezinski, R. & Beaulieu, C. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl. Microbiol. Biotechnol. 102, 7219–7230 (2018).

    CAS 
    Article 

    Google Scholar 

  • Randall, R. N., Radford, C. E., Roof, K. A., Natarajan, D. K. & Gaucher, E. A. An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat. Commun. 7, 1–6 (2016).

    Article 

    Google Scholar 

  • Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS 
    Article 

    Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    Article 

    Google Scholar 

  • Xu, B. & Yang, Z. PAMLX: a graphical user interface for PAML. Mol. Biol. Evol. 30, 2723–2724 (2013).

    CAS 
    Article 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    Article 

    Google Scholar 

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    CAS 
    Article 

    Google Scholar 

  • Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    Article 
    CAS 

    Google Scholar 

  • Forsberg, Z. et al. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53, 1647–1656 (2014).

    CAS 
    Article 

    Google Scholar 

  • Hendrikse, N. M., Charpentier, G., Nordling, E. & Syrén, P. O. Ancestral diterpene cyclases show increased thermostability and substrate acceptance. FEBS J. 285, 4660–4673 (2018).

    CAS 
    Article 

    Google Scholar 

  • Breslmayr, E. et al. A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnol. Biofuels 11, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • Goodrich, J. D. & Winter, W. T. α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8, 252–257 (2007).

    CAS 
    Article 

    Google Scholar 

  • Araki, J., Yamanaka, Y. & Ohkawa, K. Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym. J. 44, 713–717 (2012).

    CAS 
    Article 

    Google Scholar 

  • Shankar, S., Reddy, J. P., Rhim, J.-W. & Kim, H.-Y. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polym. 117, 468–475 (2015).

    CAS 
    Article 

    Google Scholar 

  • Oun, A. A. & Rhim, J.-W. Effect of oxidized chitin nanocrystals isolated by ammonium persulfate method on the properties of carboxymethyl cellulose-based films. Carbohydrate Polym. 175, 712–720 (2017).

    CAS 
    Article 

    Google Scholar 

  • Chen, R., Huang, W.-C., Wang, W. & Mao, X. Characterization of TEMPO-oxidized chitin nanofibers with various oxidation times and its application as an enzyme immobilization support. Marine Life Sci. Technol. 3, 85–93 (2020).

  • Fan, Y., Saito, T. & Isogai, A. Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9, 192–198 (2008).

    CAS 
    Article 

    Google Scholar 

  • Fan, Y., Saito, T. & Isogai, A. TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils. Carbohydrate Polym. 77, 832–838 (2009).

    CAS 
    Article 

    Google Scholar 

  • Jiang, J. et al. Chitin nanocrystals prepared by oxidation of α-chitin using the O2/laccase/TEMPO system. Carbohydrate Polym. 189, 178–183 (2018).

    CAS 
    Article 

    Google Scholar 

  • Koskela, S. et al. Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chem. 21, 5924–5933 (2019).

    CAS 
    Article 

    Google Scholar 

  • El Hariri El Nokab, M. & van der Wel, P. C. A. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: a review. Carbohydrate Polym. 240, 116276 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kato, Y., Kaminaga, J., Matsuo, R. & Isogai, A. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydrate Polym. 58, 421–426 (2004).

    CAS 
    Article 

    Google Scholar 

  • Pereira, A. G. B., Muniz, E. C. & Hsieh, Y.-L. 1H NMR and 1H–13C HSQC surface characterization of chitosan–chitin sheath-core nanowhiskers. Carbohydrate Polym. 123, 46–52 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ma, L. et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24, 4833–4841 (2003).

    CAS 
    Article 

    Google Scholar 

  • Kucharska, M., Sikora, M., Brzoza‐Malczewska, K. & Owczarek, M. In Chitin Chitosan: Properties and Applications (eds. Van den Broek, L. A. M. & Boeriu, C. G.)169–187 (Wiley, 2019).

  • Zhu, C., Monti, S. & Mathew, A. P. Cellulose nanofiber–graphene oxide biohybrids: disclosing the self-assembly and copper-ion adsorption using advanced microscopy and ReaxFF simulations. ACS nano 12, 7028–7038 (2018).

    CAS 
    Article 

    Google Scholar 

  • Huang, Q. & Zhu, Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4, 1800546 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574 (1973).

    Article 

    Google Scholar 

  • Marsden, A. et al. Electrical percolation in graphene–polymer composites. 2D Materials 5, 032003 (2018).

    Article 
    CAS 

    Google Scholar 

  • Li, C., Zhang, R., Wang, J., Wilson, L. M. & Yan, Y. Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol. (2020).

  • Woodley, J. M. Protein engineering of enzymes for process applications. Curr. Opin. Chem. Biol. 17, 310–316 (2013).

    CAS 
    Article 

    Google Scholar 

  • Østby, H., Hansen, L. D., Horn, S. J., Eijsink, V. G. H. & Várnai, A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J. Ind. Microbiol. Biotechnol. 47, 623–657 (2020).

    Article 
    CAS 

    Google Scholar 

  • Basanta, B. et al. An enumerative algorithm for de novo design of proteins with diverse pocket structures. Proc. Natl Acad. Sci. 117, 22135–22145 (2020).

    CAS 
    Article 

    Google Scholar 

  • Grayson, K. J. & Anderson, J. L. R. Designed for life: biocompatible de novo designed proteins and components. J. R. Soc. Interface 15, 20180472 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, D. et al. Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green Chem. 20, 2091–2100 (2018).

    CAS 
    Article 

    Google Scholar 

  • Manuel, M. A new semi-subterranean diving beetle of the Hydroporus normandi-complex from south-eastern France, with notes on other taxa of the complex (Coleoptera: Dytiscidae). Zootaxa 3652, 453–474 (2013).

    Article 

    Google Scholar 

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    Article 

    Google Scholar 

  • Mirdita, M. et al. ColabFold—Making protein folding accessible to all. bioRxiv https://doi.org/10.1101/2021.08.15.456425 (2021).

  • Courtade, G., Le, S. B., Saetrom, G. I., Brautaset, T. & Aachmann, F. L. A novel expression system for lytic polysaccharide monooxygenases. Carbohydrate Res. 448, 212–219 (2017).

    CAS 
    Article 

    Google Scholar 

  • Gaber, Y. et al. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). A mini-review. Biotechnol. Adv. 43, 107583 (2020).

  • Kim, E. Y., Jakobson, C. M. & Tullman-Ercek, D. Engineering transcriptional regulation to control Pdu microcompartment formation. PLoS ONE 9, e113814 (2014).

    Article 
    CAS 

    Google Scholar 

  • Stepnov, A. A. et al. Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Biotechnol. Biofuels 14, 28 (2021).

    CAS 
    Article 

    Google Scholar 

  • Segal, L., Creely, J., Martin, A. Jr & Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29, 786–794 (1959).

    CAS 
    Article 

    Google Scholar 

  • Leave a Comment