Current Siberian warming is unprecedented in the past seven millennia | Panda Anku

  • IPCC. Global warming of 1.5°C. in the An IPCC special report on the effects of global warming from 1.5°C above pre-industrial levels and associated global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change, sustainable development and poverty eradication efforts (eds. Masson-Delmotte, V. et al.) (IPCC, 2018).

  • IPCC. Climate change 2021: the physical-scientific basis. in the Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, VP et al.) (Cambridge University Press, 2021).

  • Overland, JE & Wang, MY The 2020 Siberian Heatwave. international J.Climatet. 41E2341-E2346 (2021).

    Article Google Scholar

  • Previdi, M., Janoski. TP, Chiodo, G., Smith, KL & Polvani. LM Arctic Reinforcement: a rapid response to radiative forcing. Geophysics. Resolution Latvian. 47e2020GL089933 (2020).

  • Morice, CP et al. An updated assessment of the 1850 near-surface temperature change: the HadCRUT5 dataset. J Geophys. resolution atmosphere. 126e2019JD032361 (2021).

  • Goosse, H. et al. Quantifying climate feedbacks in polar regions. nat. commune 91919 (2018).

  • Landrum, L. & Holland, MM Extremes Become Routine in an Emerging New Arctic. nat. Climate. change 101108-U1156 (2020).

    ADS article Google Scholar

  • Biskaborn, BK et al. Permafrost is warming worldwide. nat. commune 10264 (2019).

  • Turetsky, MR et al. Permafrost collapse accelerates carbon release. Nature 56932-34 (2019).

    ADS-CAS Article Google Scholar

  • Witze, A. Why Arctic Fires Are Bad News for Climate Change. Nature 585336-337 (2020).

    ADS-CAS Article Google Scholar

  • Hugelius, G. et al. Large stocks of carbon and nitrogen in peatlands are vulnerable to permafrost thawing. Proc. Natl. Acad. Science. United States of America 11720438-20446 (2020).

    ADS-CAS Article Google Scholar

  • Woelders, L. et al. Recent global warming is driving ecological change in a remote high Arctic lake. Science. representative 8th (2018).

  • Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. climate change 1669 (2021).

    ADS article Google Scholar

  • Natali, SM et al. Large winter CO2 loss observed in the northern permafrost region (Vol. 9, p. 852, 2019). nat. Climate. change 91005-1005 (2019).

    ADS article Google Scholar

  • Schuur, EAG et al. Climate change and the permafrost carbon feedback. Nature 520171-179 (2015).

    ADS-CAS Article Google Scholar

  • Nitzbon, J. et al. Rapid response of cold, ice-rich permafrost in NE Siberia to a warming climate. nat. commune 112201 (2020).

  • Teufel, B. & Sushama, L. Abrupt changes in the Arctic permafrost region threaten northern development. nat. Climate. change 9858 (2019).

  • Hjort, J. et al. Depletion of permafrost threatens Arctic infrastructure by mid-century. nat. commune 95147 (2018).

  • Forbes, BC et al. High resilience in the social-ecological system Yamal-Nenets, West Siberian Arctic, Russia. Proc. Natl. Acad. Science. United States of America 10622041-22048 (2009).

    ADS-CAS Article Google Scholar

  • Zimov, SA, Schuur, EAG & Chapin, FS Permafrost and the Global Carbon Budget. Science 3121612-1613 (2006).

    CAS article Google Scholar

  • Karlsson, J. et al. Carbon emissions from West Siberian inland waters. nat. commune 12825 (2021).

  • Thackeray, CW & Hall, A. An emerging constraint on future Arctic sea-ice albedo feedback. nat. Climate. change 9972 (2019).

    ADS article Google Scholar

  • Kaufmann, D. et al. A global database of Holocene paleotemperature records. Science. Data 7115 (2020).

  • Sundqvist, HS et al. Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate variables. Climate. Past 101605-1631 (2014).

    Article Google Scholar

  • Kaufman, DS et al. Recent warming is reversing long-term Arctic cooling. Science 3251236-1239 (2009).

    ADS-CAS Article Google Scholar

  • Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid to late Holocene. nat. Geosci. 8th122-125 (2015).

    ADS-CAS Article Google Scholar

  • Marcot, SA, Shakun, JD, Clark, PU & Mix, AC A reconstruction of regional and global temperature over the past 11,300 years. Science 3391198-1201 (2013).

    ADS-CAS Article Google Scholar

  • Briner, JP et al. Holocene climate change in arctic Canada and Greenland. Quat. Science. rev 147340-364 (2016).

    ADS article Google Scholar

  • Porter, TJ et al. Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum. nat. commune 101631 (2019).

  • Marsicek, J., Shuman, BN, Bartlein, PJ, Shafer, SL & Brewer, S. Aligning different trends and millennial variations in Holocene temperatures. Nature 55492-96 (2018).

    ADS-CAS Article Google Scholar

  • Hantemirov, RM et al. An 8768-year Yamal tree ring chronology as a tool for paleoecological reconstructions. Soot. J.Ecol. 52419-427 (2021).

    Article Google Scholar

  • Hantemirov, RM & Shiyatov, SG A continuous multimillennial ring-width chronology in Yamal, Northwestern Siberia. holocene 12717-726 (2002).

    ADS article Google Scholar

  • Lind, S., Ingvaldsen, RB & Furevik, T. Arctic warming hotspot in the northern Barents Sea associated with declining sea ice import. nat. Climate. change 8th634 (2018).

    ADS article Google Scholar

  • Briffa, KR et al. Reassessing the evidence for tree growth and inferred temperature changes during the era in Yamalia, northwestern Siberia. Quat. Science. rev 7283-107 (2013).

    ADS article Google Scholar

  • Wilson, R. et al. Northern Hemisphere summer temperatures over the last millennium from tree rings: Part I: The long-term context. Quat. Science. rev 1341-18 (2016).

    ADS article Google Scholar

  • Bjorklund, J., Serigen, K., Fonti, P., Nievergelt, D., & von Arx, G. Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. dendrochronology 60125673 (2020).

  • Esper, J. et al. Trends and uncertainties in Siberian indicators of 20th century warming. global change bio 16386-398 (2010).

    ADS article Google Scholar

  • D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘divergence problem’ in the northern forests: a review of the tree-ring evidence and possible causes. global planet change 60289-305 (2008).

    ADS article Google Scholar

  • Klippel, L., St. George, S., Buntgen, U., Krusic, PJ & Esper, J. Distinct pre-industrial cooling trends between tree rings and lower resolution temperature proxies. Climate. Past 16729-742 (2020).

    Article Google Scholar

  • Esper, J. et al. Orbital propulsion of tree ring data. nat. Climate. change 2862-866 (2012).

    ADS article Google Scholar

  • McKay NP, Kaufman DS, Routson CC, Erb MP & Zander PD Onset and Rate of Holocene Neoglacial Cooling in the Arctic. geophys. Res. Latvian. 4512487-12496 (2018).

    ADS article Google Scholar

  • Groisman, P.Y. et al. Climate change in Siberia. in the Regional environmental changes in Siberia and their global consequences (Eds. Groisman P.Y. & Gutman G.) (Springer Netherlands, 2013).

  • Post, E. et al. The polar regions in a 2 degree warmer world. Science. adult 5eaaw9883 (2019).

  • Briffa, KR & Melvin, TM A Closer Look at Regional Curve Standardization of Tree Ring Records: Justification for the Need, a Warning of Some Pitfalls, and Suggested Improvements in Its Application A Closer Look at Regional Curve Standardization. Developer paleo environment. resolution 11113-145 (2011).

    Article Google Scholar

  • Melvin, TM & Briffa, KR CRUST: Software for Implementing Regional Chronology Standardization: Part 2. Other RCS Options and Recommendations. dendrochronology 32343-356 (2014).

    Article Google Scholar

  • Melvin, TM & Briffa, KR CRUST: Software for implementing regional chronology standardization: Part 1. Signal-free RCS. dendrochronology 327-20 (2014).

    Article Google Scholar

  • Ljungqvist, FC et al. Assessment of non-linearity in European temperature-sensitive tree-ring data. dendrochronology 59125652 (2020).

  • Esper, J., Frank, DC, Wilson, RJS & Briffa, KR Effect of scaling and regression on the reconstructed temperature amplitude for the past millennium. Geophysics. Resolution Latvian. 32L07711 (2005).

  • Yang, B. et al. A 3,500-year tree-ring record of annual rainfall on the northeastern Tibetan Plateau. Proc. Natl. Acad. Science. United States of America 1112903-2908 (2014).

    ADS-CAS Article Google Scholar

  • Carrier, CA, Kalra, A. & Ahmad, S. Long-range precipitation forecasts using paleoclimate reconstructions in the western United States. J.Mt.Sci. 13614-632 (2016).

    Article Google Scholar

  • Leave a Comment