Controlling gene expression with deep generative design of regulatory DNA | Panda Anku

  • Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

  • Ko, Y.-S. et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49, 4615–4636 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zrimec, J., Buric, F., Kokina, M., Garcia, V. & Zelezniak, A. Learning the regulatory code of gene expression. Front. Mol. Biosci. 8, 673363 (2021).

  • Redden, H. & Alper, H. S. The development and characterization of synthetic minimal yeast promoters. Nat. Commun. 6, 7810 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Curran, K. A. et al. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat. Commun. 5, 4002 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Curran, K. A. et al. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth. Biol. 4, 824–832 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zrimec, J. et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat. Commun. 11, 6141 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • de Boer, C. G. et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat. Biotechnol. 38, 56–65 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cheng, J., Maier, K. C., Avsec, Ž., Rus, P. & Gagneur, J. Cis-regulatory elements explain most of the mRNA stability variation across genes in yeast. RNA 23, 1648–1659 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, T. et al. Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl Acad. Sci. USA 112, 4654–4659 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, Y. et al. Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res. 48, 6403–6412 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. https://doi.org/10.1038/s42256-021-00310-5 (2021)

  • Agarwal, V. & Shendure, J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 31, 107663 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yona, A. H., Alm, E. J. & Gore, J. Random sequences rapidly evolve into de novo promoters. Nat. Commun. 9, 1530 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vaishnav, E. D. et al. The evolution, evolvability and engineering of gene regulatory DNA. Nature 603, 455–463 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goodfellow, I. J. et al. Generative adversarial networks. Preprint at arXiv [stat.ML] (2014).

  • Killoran, N., Lee, L. J., Delong, A., Duvenaud, D. & Frey, B. J. Generating and designing DNA with deep generative models. Preprint at arXiv [cs.LG] (2017).

  • Zürcher, E. et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161, 1066–1075 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cai, Y.-M. et al. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res. 48, 11845–11856 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharon, E. et al. Probing the effect of promoters on noise in gene expression using thousands of designed sequences. Genome Res. 24, 1698–1706 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Levo, M. et al. Unraveling determinants of transcription factor binding outside the core binding site. Genome Res. 25, 1018–1029 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blazeck, J. & Alper, H. S. Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol. J. 8, 46–58 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cuperus, J. T., Groves, B. & Kuchina, A. Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences. Genome Res. 27, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dvir, S., Velten, L., Sharon, E. & Zeevi, D. Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc. Natl Acad. Sci. USA 110, E2792–E2801 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Savinov, A., Brandsen, B. M., Angell, B. E., Cuperus, J. T. & Fields, S. Effects of sequence motifs in the yeast 3’ untranslated region determined from massively parallel assays of random sequences. Genome Biol. 22, 293 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shalem, O. et al. Systematic dissection of the sequence determinants of gene 3’ end mediated expression control. PLoS Genet. 11, e1005147 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eiben, A. E. & Smith, J. From evolutionary computation to the evolution of things. Nature 521, 476–482 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jores, T. et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat. Plants 7, 842–855 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bogard, N., Linder, J., Rosenberg, A. B. & Seelig, G. A deep neural network for predicting and engineering alternative polyadenylation. Cell 178, 91–106.e23 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Linder, J., Bogard, N., Rosenberg, A. B. & Seelig, G. A generative neural network for maximizing fitness and diversity of synthetic DNA and protein sequences. Cell Syst. 11, 49–62.e16 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Szegedy, C. et al. Intriguing properties of neural networks. Preprint at arXiv [cs.CV] (2013).

  • Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. Preprint at arXiv [cs.CV] (2014).

  • Gupta, A. & Zou, J. Feedback GAN for DNA optimizes protein functions. Nat. Mach. Intell. 1, 105–111 (2019).

    Article 

    Google Scholar 

  • Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lahtvee, P.-J. et al. Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast. Cell Syst. 4, 495–504.e5 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Alam, M. T. et al. The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat. Microbiol. 1, 15030 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Redden, H., Morse, N. & Alper, H. S. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res. 15, 1–10 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hershberg, R. & Petrov, D. A. General rules for optimal codon choice. PLoS Genet. 5, e1000556 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guimaraes, J. C., Rocha, M., Arkin, A. P. & Cambray, G. D-Tailor: automated analysis and design of DNA sequences. Bioinformatics 30, 1087–1094 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Goodfellow, I. et al. Generative adversarial nets. In Advances in Neural Information Processing Systems Vol. 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 2672–2680 (Curran Associates, Inc., 2014).

  • Reed, S. et al. Generative adversarial text to image synthesis. Preprint at arXiv [cs.NE] (2016).

  • Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Basehoar, A. D., Zanton, S. J. & Pugh, B. F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lubliner, S., Keren, L. & Segal, E. Sequence features of yeast and human core promoters that are predictive of maximal promoter activity. Nucleic Acids Res. 41, 5569–5581 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, J., Liang, Q., Song, W. & Marchisio, M. A. Nucleotides upstream of the Kozak sequence strongly influence gene expression in the yeast S. cerevisiae. J. Biol. Eng. 11, 25 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nakagawa, S., Niimura, Y., Gojobori, T., Tanaka, H. & Miura, K.-I. Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res. 36, 861–871 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, Z. & Sherman, F. 3’-end-forming signals of yeast mRNA. Trends Biochem. Sci. 21, 477–481 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xi, L. et al. Predicting nucleosome positioning using a duration Hidden Markov Model. BMC Bioinforma. 11, 346 (2010).

    Article 
    CAS 

    Google Scholar 

  • Kato, H., Shimizu, M. & Urano, T. Chemical map-based prediction of nucleosome positioning using the Bioconductor package nuCpos. BMC Bioinforma. 22, 322 (2021).

  • Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through deep visualization. Preprint at arXiv [cs.CV] (2015).

  • Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A. & Yosinski, J. Plug & play generative networks: conditional iterative generation of images in latent space. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4467–4477 (2017).

  • Ziemann, M., Kaspi, A. & El-Osta, A. Digital expression explorer 2: a repository of uniformly processed RNA sequencing data. Gigascience 8, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • van der Maaten, L. Visualizing data using t-SNE. https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwAR0Bgg1eA5TFmqOZeCQXsIoL6PKrVXUFaskUKtg6yBhVXAFFvZA6yQiYx-M (2008).

  • Lubliner, S. et al. Core promoter sequence in yeast is a major determinant of expression level. Genome Res. 25, 1008–1017 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roy, B. & Jacobson, A. The intimate relationships of mRNA decay and translation. Trends Genet. 29, 691–699 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • LaGrandeur, T. & Parker, R. The cis acting sequences responsible for the differential decay of the unstable MFA2 and stable PGK1 transcripts in yeast include the context of the translational start codon. RNA 5, 420–433 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3’ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sugihara, F., Kasahara, K. & Kokubo, T. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 39, 59–75 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rhee, H. S. & Pugh, B. F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, R., Liu, L., Li, X., Liu, D. & Yuan, Y. Engineering yeast artificial core promoter with designated base motifs. Microb. Cell Fact. 19, 38 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, C., Bolotin, E., Jiang, T., Sladek, F. M. & Martinez, E. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389, 52–65 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267–273 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ichikawa, Y. et al. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo. Biochem. Biophys. Res. Commun. 476, 57–62 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Neymotin, B., Ettorre, V. & Gresham, D. Multiple transcript properties related to translation affect mRNA degradation rates in Saccharomyces cerevisiae. G3 6, 3475–3483 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. Preprint at arXiv [cs.CV] (2013).

  • Stranger, B. E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Masel, J. & Siegal, M. L. Robustness: mechanisms and consequences. Trends Genet. 25, 395–403 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Payne, J. L. & Wagner, A. Mechanisms of mutational robustness in transcriptional regulation. Front. Genet. 6, 322 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Watson, J. D. et al. Molecular Biology of the Gene. 6th edn (Benjamin Cummings, Pearson, 2008).

    Google Scholar 

  • Siepel, A. & Arbiza, L. Cis-regulatory elements and human evolution. Curr. Opin. Genet. Dev. 29, 81–89 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor–DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, L. et al. Transcription factor family-specific DNA shape readout revealed by quantitative specificity models. Mol. Syst. Biol. 13, 910 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zrimec, J. Structural representations of DNA regulatory substrates can enhance sequence-based algorithms by associating functional sequence variants. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics 1–6 (Association for Computing Machinery, 2020).

  • Slattery, M. et al. Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci. 39, 381–399 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA 102, 12678–12683 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non‐traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).

  • Jarczynska, Z. D. et al. DIVERSIFY: a fungal multispecies gene expression platform. ACS Synth. Biol. 10, 579–588 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brady, J. R. & Love, J. C. Alternative hosts as the missing link for equitable therapeutic protein production. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00884-w (2021)

  • Rajkumar, A. S., Varela, J. A., Juergens, H., Daran, J.-M. G. & Morrissey, J. P. Biological parts for Kluyveromyces marxianus synthetic biology. Front. Bioeng. Biotechnol. 7, 97 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gould, N., Hendy, O. & Papamichail, D. Computational tools and algorithms for designing customized synthetic genes. Front. Bioeng. Biotechnol. 2, 41 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, C. & Jeffries, T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 73, 6072–6077 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lammens, E.-M., Nikel, P. I. & Lavigne, R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat. Commun. 11, 5294 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rud, I., Jensen, P. R., Naterstad, K. & Axelsson, L. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 152, 1011–1019 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kvon, E. Z. Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics 106, 185–192 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ali, S. & Kim, W.-C. A fruitful decade using synthetic promoters in the improvement of transgenic plants. Front. Plant Sci. 10, 1433 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, K., Kurachi, S. & Kurachi, K. Limitation in use of heterologous reporter genes for gene promoter analysis: SILENCER ACTIVITY ASSOCIATED WITH THE CHLORAMPHENICOL ACETYLTRANSFERASE REPORTER GENE *. J. Biol. Chem. 278, 4826–4830 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cherry, J. M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 26, 211–243 (1964).

    MATH 

    Google Scholar 

  • Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint at arXiv [cs.LG] (2015).

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    MathSciNet 
    MATH 

    Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems Vol. 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran Associates, Inc., 2012).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv [cs.LG] (2014).

  • Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (eds Fürnkranz & J., Joachims, T.) 807–814 (2010).

  • He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision 1026–1034 (2015).

  • Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: a Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015).

    Article 

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition 770–778 (2016).

  • Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein GAN. Preprint at arXiv [stat.ML] (2017).

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) 5767–5777 (Curran Associates, Inc., 2017).

  • Brookes, D. H., Park, H. & Listgarten, J. Conditioning by adaptive sampling for robust design. Preprint at arXiv [cs.LG] (2019).

  • Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014 (eds Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) 818–833 (Springer International Publishing, 2014).

  • Ancona, M., Ceolini, E., Öztireli, C. & Gross, M. Towards better understanding of gradient-based attribution methods for Deep Neural Networks. Preprint at arXiv [cs.LG] (2017).

  • Houser, J. R. et al. An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae. Yeast 29, 519–530 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jessop-Fabre, M. M. et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11, 1110–1117 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Teste, M.-A., Duquenne, M., François, J. M. & Parrou, J.-L. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol. Biol. 10, 99 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity between motifs. Genome Biol. 8, R24 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leave a Comment