Compound marine heatwaves and ocean acidity extremes | Panda Anku

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Ocean. 141, 227–238 (2016).

    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Collins, M. et al. Chapter 6: extremes, abrupt changes and managing risks. IPCC Spec. Rep. Ocean Cryosph. 589–655 (2019).

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).

    ADS 
    Article 

    Google Scholar 

  • Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

    ADS 
    Article 

    Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bednaršek, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281, 20140123 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bednaršek, N. et al. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California current system with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 1–17 (2018).

    Article 

    Google Scholar 

  • Lischka, S. & Riebesell, U. Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob. Chang. Biol. 18, 3517–3528 (2012).

    ADS 
    Article 

    Google Scholar 

  • Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Chang. 5, 113–128 (2013).

    Article 

    Google Scholar 

  • Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Chang. 8, 469–477 (2018).

    ADS 
    Article 

    Google Scholar 

  • Ridder, N. N. et al. Global hotspots for the occurrence of compound events. Nat. Commun. 11, 5956 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-0060-z (2020).

    Article 

    Google Scholar 

  • Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).

    ADS 
    Article 

    Google Scholar 

  • Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).

    Google Scholar 

  • Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

    Article 

    Google Scholar 

  • Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Boosted food web productivity through ocean acidification collapses under warming. Glob. Chang. Biol. 23, 4177–4184 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science (80-.) 369, 829–832 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).

  • Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).

    CAS 
    Article 

    Google Scholar 

  • Takahashi, T. et al. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. Part II Top. Stud. Oceanogr 49, 1601–1622 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Doney, S. C. et al. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust. Deep Sea Res. Part II Top. Stud. Oceanogr 56, 640–655 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Landschützer, P., Gruber, N. & Bakker, D. C. E. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30, 1396–1417 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 118, 6704–6716 (2013).

    ADS 
    Article 

    Google Scholar 

  • Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).

    ADS 
    Article 

    Google Scholar 

  • Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Chang. 10, 277–286 (2020).

    ADS 
    Article 

    Google Scholar 

  • Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    ADS 
    Article 

    Google Scholar 

  • Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

    ADS 
    Article 

    Google Scholar 

  • Carter, B. R. et al. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnol. Oceanogr. Methods 16, 119–131 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

  • Gruber, N., Keeling, C. D. & Bates, N. R. Interannual variability in the North Atlantic Ocean carbon sink. Science 298, 2374–2378 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Ann. Rev. Mar. Sci. 2, 115–143 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton University Press, 2006).

  • Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep 10, 19359 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vogt, L., Burger, F. A., Griffies, S. M. & Frölicher, T. L. Local drivers of marine heatwaves: a global analysis with an earth system model. Front. Clim. 4, 49 (2022).

  • Feng, M., McPhaden, M. J., Xie, S.-P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1277 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 26, 4800–4811 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barbieux, M. et al. Assessing the variability in the relationship between the particulate backscattering coefficient and the chlorophyll a concentration from a global Biogeochemical-Argo database. J. Geophys. Res. Ocean. 123, 1229–1250 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Marine Sci. 6, 734 (2019).

    Article 

    Google Scholar 

  • Prada, F. et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7, 40842 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-0068-4 (2020).

    Article 

    Google Scholar 

  • Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Muñoz, N. J., Farrell, A. P., Heath, J. W. & Neff, B. D. Adaptive potential of a Pacific salmon challenged by climate change. Nat. Clim. Chang. 5, 163–166 (2015).

    ADS 
    Article 

    Google Scholar 

  • Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv 7, eabh0895 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Vogel, M. M., Zscheischler, J., Fischer, E. M. & Seneviratne, S. I. Development of future heatwaves for different hazard thresholds. J. Geophys. Res. Atmos. 125, e2019JD032070 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Frölicher, T. L., Rodgers, K. B., Stock, C. A. & Cheung, W. W. L. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeoch. Cycles 30, 1224–1243 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L. & Frölicher, T. L. Connecting changing ocean circulation with changing climate. J. Clim 26, 2268–2278 (2013).

    ADS 
    Article 

    Google Scholar 

  • Gervais, M., Shaman, J. & Kushnir, Y. Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Clim. 31, 5927–5946 (2018).

    ADS 
    Article 

    Google Scholar 

  • Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. annual mean response. J. Clim 4, 785–818 (1991).

    ADS 
    Article 

    Google Scholar 

  • Haumann, F. A., Gruber, N. & Münnich, M. Sea-ice induced southern ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132 (2020).

    ADS 
    Article 

    Google Scholar 

  • Kwiatkowski, L. & Orr, J. C. Diverging seasonal extremes for ocean acidification during the twenty-first century. Nat. Clim. Chang. 8, 141–145 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fassbender, A. J., Rodgers, K. B., Palevsky, H. I. & Sabine, C. L. Seasonal asymmetry in the evolution of surface ocean pCO2 and pH thermodynamic drivers and the influence on sea-air CO2 flux. Glob. Biogeochem. Cycles 32, 1476–1497 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gray, A. R. et al. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude southern ocean. Geophys. Res. Lett. 45, 9049–9057 (2018).

    ADS 
    Article 

    Google Scholar 

  • Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS 
    Article 

    Google Scholar 

  • Xue, L., Cai, W.-J., Jiang, L.-Q. & Wei, Q. Why are surface ocean pH and CaCO3 saturation state often out of phase in spatial patterns and seasonal cycles? Global Biogeochem. Cycles 35, e2021GB006949 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, K. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).

    Article 

    Google Scholar 

  • Wilks, D. Statistical Methods in the Atmospheric Sciences (Elsevier, 2005).

  • Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

    MATH 
    Article 

    Google Scholar 

  • Agresti, A. Categorical Data Analysis (Wiley-Blackwell, 2012).

  • Cochran, W. G. Some methods for strengthening the common χ2 tests. Biometrics 10, 417–451 (1954).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Orr, J. C. & Epitalon, J.-M. Improved routines to model the ocean carbonate system: mocsy 2.0. Geosci. Model Dev. 8, 485–499 (2015).

    ADS 
    Article 

    Google Scholar 

  • Boyer, T. P et al. NCEI standard product: world ocean database (WOD). NOAA Natl. Centers Environ. Information. Dataset https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOD (2016).

  • van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E. & Wallace, D. W. R. MATLAB Program Developed for CO2 System Calculations. (2011).

  • Bakker, D. C. E. et al. Surface ocean CO2 atlas (SOCAT) V4. https://doi.org/10.1594/PANGAEA.866856 (2016).

  • Sutton, A. J. et al. Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth Syst. Sci. Data 11, 421–439 (2019).

    ADS 
    Article 

    Google Scholar 

  • Orr, J. C., Epitalon, J.-M., Dickson, A. G. & Gattuso, J.-P. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 207, 84–107 (2018).

    CAS 
    Article 

    Google Scholar 

  • Boyer, Tim P. et al. World Ocean Atlas 2018. https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (2021).

  • Garcia, H. E. et al. World Ocean Atlas 2018, Volume 4: dissolved inorganic nutrients (phosphate, nitrate and nitrate+nitrite, silicate). 35 https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (2019).

  • Gregg, W. & Rousseaux, C. NASA Ocean Biogeo-chemical model assimilating satellite chlorophyll data global daily VR2017. https://doi.org/10.5067/PT6TXZKSHBW9 (2017).

  • Landschützer, P., Gruber, N. & Bakker, D. C. E. An observation-based global monthly gridded sea surface pCO2 product from 1982 onward and its monthly climatology (NCEI Accession 0160558). https://doi.org/10.7289/V5Z899N6 (2020).

  • Griffies, S. M. ELEMENTS OF MOM4p1. GFDL OCEAN GROUP TECHNICAL REPORT NO. 6. https://www.gfdl.noaa.gov/wp-content/uploads/files/model_development/ocean/guide4p1.pdf. (NOAA/Geophysical Fluid Dynamics Laboratory, 2009).

  • Najjar, R. & Orr, J. Design of OCMIP-2 Simulations of Chlorofluorocarbons, the Solubility Pump and Common Biogeochemistry. https://www.cgd.ucar.edu/oce/OCMIP/design.pdf (1998).

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 109, 213 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 109, 95 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Leave a Comment