Bacteria-plant interactions synergistically enhance biodegradation of diesel fuel hydrocarbons | Panda Anku

  • Bragg, J. R., Prince, R. C., Harner, E. J. & Atlas, R. M. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368, 413–418 (1994).

    CAS 

    Google Scholar 

  • Duffy, J. J., Peake, E. & Mohtadi, M. F. Oil spills on land as potential sources of groundwater contamination. Environ. Int. 3, 107–120 (1980).

    CAS 

    Google Scholar 

  • Azubuike, C. C., Chikere, C. B. & Okpokwasili, G. C. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32, 180 (2016).

    Google Scholar 

  • USEPA. Introduction to Phytoremediation. EPA/600/R-99/107 (United States Environmental Protection Agency, 2000).

  • USEPA. Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup. EPA 542-R-01-006 (United States Environmental Protection Agency, 2001).

  • Meagher, R. B. Phytoremediation of toxic elemental and organic pollutants. Current Opin. Plant Biol. 3, 153–162 (2000).

    CAS 

    Google Scholar 

  • Correa-García, S., Pande, P., Séguin, A., St-Arnaud, M. & Yergeau, E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb. Biotechnol. 11, 819–832 (2018).

    Google Scholar 

  • Cheng, L., Zhou, Q. & Yu, B. Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil. Int. J. Phytoremediation 21, 1161–1169 (2019).

    CAS 

    Google Scholar 

  • Saravanan, A. et al. Rhizoremediation – a promising tool for the removal of soil contaminants: a review. J. Environ. Chem. Eng. 8, 103543 (2020).

    CAS 

    Google Scholar 

  • Tyagi, M., da Fonseca, M. M. R. & de Carvalho, C. C. C. R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231–241 (2011).

    CAS 

    Google Scholar 

  • Bevivino, A., Dalmastri, C., Tabacchioni, S. & Chiarini, L. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol. Fertil. Soils 31, 225–231 (2000).

    Google Scholar 

  • Rohrbacher, F. & St-Arnaud, M. Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy 6, 19 (2016).

    Google Scholar 

  • Garrido-Sanz, D. et al. Metagenomic insights into the bacterial functions of a diesel-degrading consortium for the rhizoremediation of diesel-polluted soil. Genes 10, 456 (2019).

    CAS 

    Google Scholar 

  • Glick, B. R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383–393 (2003).

    CAS 

    Google Scholar 

  • Eze, M. O., George, S. C. & Hose, G. C. Dose-response analysis of diesel fuel phytotoxicity on selected plant species. Chemosphere 263, 128382 (2021).

    CAS 

    Google Scholar 

  • Eze, M. O., Hose, G. C. & George, S. C. Assessing the effect of diesel fuel on the seed viability and germination of Medicago sativa using the event-time model. Plants 9, 1062 (2020).

    CAS 

    Google Scholar 

  • Silva, P. R. A. D. et al. Draft genome sequence of Paraburkholderia tropica Ppe8 strain, a sugarcane endophytic diazotrophic bacterium. Braz. J. Microbiol. 49, 210–211 (2018).

    Google Scholar 

  • García, S. S. et al. Paraburkholderia tropica as a plant-growth–promoting bacterium in barley: characterization of tissues colonization by culture-dependent and -independent techniques for use as an agronomic bioinput. Plant Soil 451, 89–106 (2020).

    Google Scholar 

  • Rahman, M. et al. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci. Rep. 8, 2504 (2018).

    Google Scholar 

  • Goldstein, R. M., Mallory, L. M. & Alexander, M. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50, 977–983 (1985).

    CAS 

    Google Scholar 

  • van Veen, J. A., van Overbeek, L. S. & van Elsas, J. D. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61, 121–135 (1997).

    Google Scholar 

  • Eze, M. O. & George, S. C. Ethanol-blended petroleum fuels: implications of co-solvency for phytotechnologies. RSC Adv. 10, 6473–6481 (2020).

    CAS 

    Google Scholar 

  • ATSDR. Toxicological Profile for Fuel Oils (U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, United States, 1995).

  • Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide: Volume 2: Biomarkers and Isotopes in Petroleum Systems and Earth History (Cambridge University Press, 2004).

  • Bouhajja, E. et al. Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries. Appl. Microbiol. Biotechnol. 101, 797–808 (2017).

    CAS 

    Google Scholar 

  • Hamzah, R. Y. & Al-Baharna, B. S. Catechol ring-cleavage in Pseudomonas cepacia: the simultaneous induction of ortho and meta pathways. Appl. Microbiol. Biotechnol. 41, 250–256 (1994).

    CAS 

    Google Scholar 

  • Ishida, T., Kita, A., Miki, K., Nozaki, M. & Horiike, K. Structure and reaction mechanism of catechol 2,3-dioxygenase (metapyrocatechase). Int. Cong. Ser. 1233, 213–220 (2002).

    CAS 

    Google Scholar 

  • Atashgahi, S. et al. A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 4490 (2018).

    Google Scholar 

  • Duff, S. M. G., Sarath, G. & Plaxton, W. C. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant. 90, 791–800 (1994).

    CAS 

    Google Scholar 

  • Flügel, F. et al. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29, 2537–2551 (2017).

    Google Scholar 

  • Paul, M. J., Gonzalez-Uriarte, A., Griffiths, C. A. & Hassani-Pak, K. The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiol. 177, 12–23 (2018).

    CAS 

    Google Scholar 

  • Cabot, C. et al. A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci. 10, 1171 (2019).

    Google Scholar 

  • Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J. M., Prieto, J. A. & Randez-Gil, F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl. Environ. Microbiol. 73, 110–116 (2007).

    Google Scholar 

  • Huang, J. et al. Genes of acyl carrier protein family show different expression profiles and overexpression of acyl carrier protein 5 modulates fatty acid composition and enhances salt stress tolerance in Arabidopsis. Front. Plant Sci. 8, 987 (2017).

    Google Scholar 

  • Esmaeel, Q. et al. Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Front. Microbiol. 9, 2093 (2018).

    Google Scholar 

  • Dias, G. M. et al. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. MicrobiologyOpen 8, e00801 (2019).

    Google Scholar 

  • Böhm, M., Hurek, T. & Reinhold-Hurek, B. Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol. Plant Microbe Interact. 20, 526–533 (2007).

    Google Scholar 

  • Brencic, A. & Winans, S. C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69, 155–194 (2005).

    CAS 

    Google Scholar 

  • Chen, Y. et al. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom. Data 4, 33–42 (2015).

    Google Scholar 

  • Haq, I. U., Graupner, K., Nazir, R. & van Elsas, J. D. The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001—a plethora of outstanding interactive capabilities unveiled. Genome Biol. Evol 6, 1652–1668 (2014).

    Google Scholar 

  • Shen, X., Hu, H., Peng, H., Wang, W. & Zhang, X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genom. 14, 271 (2013).

    CAS 

    Google Scholar 

  • Lee, Y., Lee, Y. & Jeon, C. O. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci. Rep. 9, 860 (2019).

    Google Scholar 

  • Gemmell, R. T. & Knowles, C. J. Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol. Lett. 192, 185–190 (2000).

    CAS 

    Google Scholar 

  • Röling, W. F. M., Ortega-Lucach, S., Larter, S. R. & Head, I. M. Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. J. Appl. Microbiol. 101, 290–299 (2006).

    Google Scholar 

  • Giovanella, P. et al. Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater. 382, 121024 (2020).

    CAS 

    Google Scholar 

  • Bojes, H. K. & Pope, P. G. Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul. Toxicol. Pharmacol. 47, 288–295 (2007).

    CAS 

    Google Scholar 

  • ECHA. The Candidate List of Substances of Very High Concern (SVHCs). ECHA/PR/19/01 (European Chemical Agency, 2019).

  • Loibner, A. P., Szolar, O. H. J., Braun, R. & Hirmann, D. Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox®. Environ. Toxicol. Chem. 23, 557–564 (2004).

    CAS 

    Google Scholar 

  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33 (2014).

    CAS 

    Google Scholar 

  • Craig, J., Gerali, F., MacAulay, F. & Sorkhabi, R. The history of the European oil and gas industry (1600s–2000s). Geol. Soc. Spec. Publ. 465, 1 (2018).

    Google Scholar 

  • Eze, M. O., Hose, G. C., George, S. C. & Daniel, R. Diversity and metagenome analysis of a hydrocarbon-degrading bacterial consortium from asphalt lakes located in Wietze, Germany. AMB Express 11, 89 (2021).

    CAS 

    Google Scholar 

  • Atlas, R. M. Handbook of Microbiological Media, 4th edn (CRC Press, Boca Raton, Florida, 2010).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  • Wick, R. Porechop. Github. https://github.com/rrwick/Porechop (2017).

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Google Scholar 

  • Parks, D. H. et al Selection of representative genomes for 24,706 bacterial and archaeal species clusters provide a complete genome-based taxonomy. Preprint at bioRxiv https://doi.org/10.1101/771964 (2019).

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).

    CAS 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 

    Google Scholar 

  • Wemheuer, F. et al. Agroforestry management systems drive the composition, diversity, and function of fungal and bacterial endophyte communities in Theobroma cacao leaves. Microorganisms 8, 405 (2020).

    CAS 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119–119 (2010).

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 

    Google Scholar 

  • Eze, M. O., Thiel, V., Hose, G. C., George, S. C. & Daniel, R. Enhancing rhizoremediation of petroleum hydrocarbons through bioaugmentation with a plant growth-promoting bacterial consortium. Chemosphere 289, 133143 (2022).

    CAS 

    Google Scholar 

  • Chen, S., Li, J., Fritz, E., Wang, S. & Hüttermann, A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For. Ecol. Manag. 168, 217–230 (2002).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • Ghasemi, A. & Zahediasl, S. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 486–489 (2012).

    Google Scholar 

  • Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics; Essays in Honor of Harold Hotelling (eds. Ingram, O. & Harold, H.) (Stanford University Press, 1960).

  • Hoffmann, W. A. & Poorter, H. Avoiding bias in calculations of relative growth rate. Ann. Bot. 90, 37–42 (2002).

    Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & van, tRietK. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875 (1990).

    CAS 

    Google Scholar 

  • Wu, B. et al. Establishing and optimizing a bacterial consortia for effective biodegradation of petroleum contaminants: Advancing classical microbiology via experimental and mathematical approach. Water 13, 3311 (2021).

    CAS 

    Google Scholar 

  • Gregorczyk, A. A logistic function—its application to the description and prognosis of plant growth. Acta Soc. Bot. Pol. 60, 67–76 (1991).

    Google Scholar 

  • Szparaga, A. & Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L. PLOS ONE 13, e0201980 (2018).

    Google Scholar 

  • Lee, S. & Lee, D. K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 71, 353–360 (2018).

    Google Scholar 

  • Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  • Eze, M. O., Thiel, V., Hose, G. C., George, S. C. & Daniel, R. GC-MS dataset of hydrocarbon biodegradation. figshare. Dataset. https://doi.org/10.6084/m9.figshare.20400984.v1.

  • Leave a Comment