A nanopore interface for higher bandwidth DNA computing | Panda Anku

  • Zhang, DY, Turberfield, AJ, Yurke, B. & Winfree, E. Engineering of entropy-driven reactions and networks catalyzed by DNA. Science. (80-.) 3181121-1125 (2007).

    ADS CAS Google Scholar

  • Qian, L. & Winfree, E. Scaling digital circuit computations with DNA strand-shifting cascades. Science. (80-.) 3321196-1201 (2011).

    ADS-CASGoogle Scholar

  • Seelig, G., Soloveichik, D., Zhang, DY & Winfree, E. Enzyme-free nucleic acid logic circuits. Science. (80-.) 3141585-1588 (2006).

    ADS CAS Google Scholar

  • Cherry, KM & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559370-388 (2018).

    ADS CAS PubMedGoogle Scholar

  • Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Science. UNITED STATES OF AMERICA. 1075393-5398 (2010).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Chen, YJ et al. Programmable chemical controllers from DNA. nat. Nanotechnology. 8th755-762 (2013).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Enzyme-free nucleic acid dynamic systems. Science (80-.). 358(2017) 10.1126/science.aal2052.

  • Zhang, C. et al. Cancer diagnosis with molecular DNA calculation. nat. Nanotechnology. 2020 158 fifteen709-715 (2020).

    CAS Google Scholar

  • Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475368-372 (2011).

    CAS PubMedGoogle Scholar

  • Zhang, DY & Winfree, E. Control of DNA strand displacement kinetics by toehold swapping. Jam. Chem. Soc. 13117303-17314 (2009).

    CAS PubMedGoogle Scholar

  • Zhang, DY & Seelig, G. Dynamic DNA nanotechnology using strand displacement reactions. nat. chem. 3103-113 (2011).

    CAS PubMedGoogle Scholar

  • Yurke, B., Turberfield, AJ, Mills, AP, Simmel, FC & Neumann, JL A DNA-powered molecular machine made of DNA. Nat2000 4066796 406605-608 (2000).

    CAS Google Scholar

  • Qiu, X., Guo, J., Xu, J. & Hildebrandt, N. Three-dimensional FRET multiplexing for DNA quantification with attomolar detection limits. J.Phys. Chem. Lette. 94379-4384 (2018).

    CAS PubMedGoogle Scholar

  • Y, W. et al. Fast sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 176131-6139 (2017).

    ADSGoogle Scholar

  • Guo, J., Wang, S., Dai, N., Teo, YN & Kool, ET Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging. Proc. Natl. Acad. Science. United States of America 1083493-3498 (2011).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Ju J, Ruan C, Fuller CW, Glazer AN & Mathies RA Fluorescence Energy Transfer Dye-Labeled Primers for DNA Sequencing and Analysis. Proc. Natl. Acad. Science. United States of America 924347-4351 (1995).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Ashkenasy, N., Sánchez-Quesada, J., Bayley, H. & Ghadiri, MR Recognition of a single base in a single strand of DNA: a step in DNA sequencing in nanopores. Angew. Chem. – Int. Ed. 441401-1404 (2005).

    CAS Google Scholar

  • Stoddart, D., Heron, AJ, Mikhailova, E., Maglia, G. & Bayley, H. Single nucleotide discrimination in immobilized DNA oligonucleotides containing a biological nanopore. Proc. Natl. Acad. Science. UNITED STATES OF AMERICA. 1067702-7707 (2009).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Gu, LQ, Braha, O, Conlan, S, Cheley, S & Bayley, H. Stochastic capture of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398686-690 (1999).

    ADS CAS PubMedGoogle Scholar

  • Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection through aptamer-equipped nanopores. Jam. Chem. Soc. 1342781-2787 (2012).

    CAS PubMed PubMed CentralGoogle Scholar

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. nat. Biotechnology. 38176-181 (2020).

    CAS PubMedGoogle Scholar

  • Jain, M., Olsen, HE, Paten, B. & Akeson, M. The Oxford Nanopore MinION: bringing nanopore sequencing to the genomics community. Genome Biol. 171-11 (2016).

    Google Scholar

  • Ding, T. et al. DNA nanotechnology-assisted nanopore-based analysis. nucleic acids res. 482791-2806 (2020).

    CAS PubMed PubMed CentralGoogle Scholar

  • Ohara, M., Takinoue, M. & Kawano, R. Nanopore logic operation with DNA-to-RNA transcription in a droplet system. ACS Synth. biol. 61427-1432 (2017).

    CAS PubMedGoogle Scholar

  • Ohara, M., Sekiya, Y. & Kawano, R. Hairpin DNA unzipping analysis using a biological nanopore array. electrochemistry 84338-341 (2016).

    CAS Google Scholar

  • Yasuga, H. et al. Logic gate function by DNA translocation through biological nanopores. Plus one 11e0149667 (2016).

    PubMed PubMed Headquarters Google Scholar

  • Zhu, Z., Wu, R. & Li, B. Exploring solid-state nanopores in the characterization of reaction mixtures generated from a DNA assembly catalytic circuit. Chem. Science. 101953-1961 (2019).

    CAS PubMedGoogle Scholar

  • Kong, J., Zhu, J. & Keyser, UF Single-molecule-based SNP detection using designed DNA supports and solid-state nanopores. Chem. Commun. 53436-439 (2016).

    Google Scholar

  • Wang Y, Zheng D, Tan Q, Wang MX & Gu LQ Nanopore-based detection of circulating microRNAs in lung cancer patients. nat. Nanotechnology. 6668-674 (2011).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Tian K, He Z, Wang Y, Chen SJ & Gu LQ Design of a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS nano 73962-3969 (2013).

    CAS PubMed PubMed CentralGoogle Scholar

  • Zhang, X., Wang, Y., Fricke, BL & Gu, LQ Programming of nanopore ion flux for encoded multiplexed microRNA detection. ACS nano 8th3444-3450 (2014).

    CAS PubMed PubMed CentralGoogle Scholar

  • An, N., Fleming, AM, White, HS & Burrows, CJ Crown-ether-electrolyte interactions enable nanopore detection of single abasic DNA sites in single molecules. Proc. Natl. Acad. Science. UNITED STATES OF AMERICA. 10911504-11509 (2012).

    ADS CAS PubMed PubMed CentralGoogle Scholar

  • Schibel, AEP et al. Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation at the DNA damage site. Jam. Chem. Soc. 13217992-17995 (2010).

    CAS PubMed PubMed CentralGoogle Scholar

  • Cardozo, N. et al. Direct multiplex detection of barcoded protein reporters on a nanopore array. nat. Biotechnology. 20211-5 (2021).

  • Chen, X. Extension of the ruleset of DNA circuits with associative toehold activation. Jam. Chem. Soc. 134263-271 (2012).

    CAS PubMedGoogle Scholar

  • GitHub – nanoporetech/kmer_models: Predictive kmer models for development purposes. https://github.com/nanoporetech/kmer_models.

  • He K, Zhang X, Ren S & Sun J. Deep residual learning for image recognition. Proc. IEEE calculation. society conf calculation. Vis. pattern recognition. 2016770-778 (2016).

    Google Scholar

  • Roush, S. & Slack, FJ The let-7 family of microRNAs. trends cell biology 18505-516 (2008).

    CAS PubMedGoogle Scholar

  • Chen, SX & Seelig, G. An engineered kinetic amplification mechanism for distinguishing single nucleotide variants by DNA hybridization probes. Jam. Chem. Soc. 1385076-5086 (2016).

    CAS PubMedGoogle Scholar

  • Tabatabaei, SK et al. Expanding the molecular alphabet of DNA-based data storage systems with neural network nanopore readout processing. Nano Lett. 221905-1914 (2022).

    ADS PubMed PubMed CentralGoogle Scholar

  • Mathé J, Visram H, Viasnoff V, Rabin Y & Meller A. Nanopore Unzipping of Individual DNA Hairpin Molecules. biophys. J 873205-3212 (2004).

    ADS PubMed PubMed CentralGoogle Scholar

  • Celaya, G., Perales-Calvo, J., Muga, A., Moro, F. & Rodriguez-Larrea, D. Label-free, multiplexed, single-molecule analysis of protein-DNA complexes containing nanopores. ACS nano 115815-5825 (2017).

    CAS PubMedGoogle Scholar

  • Derrington, IM et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. nat. Biotechnology. 331073-1075 (2015).

    CAS PubMed PubMed CentralGoogle Scholar

  • Adam, G. & Delbrück, M. Reduction of Dimensionality in Biological Diffusion Processes. Structure. Chem. Mol. biol. (1968) https://collections.archives.caltech.edu/repositories/2/archival_objects/20071.

  • Zhu, D. et al. Cancer-specific microRNA analysis using a non-enzymatic nucleic acid cycle. ACS appl. mater interfaces 1111220-11226 (2019).

    CAS PubMedGoogle Scholar

  • Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. RNAi-based multi-input logic circuit for identifying specific cancer cells. Science. (80-.) 3331307-1311 (2011).

    ADS-CASGoogle Scholar

  • Choi, HMT et al. Programmable in situ amplification for multiplex imaging of mRNA expression. nat. Biotechnology. 281208-1212 (2010).

    CAS PubMed PubMed CentralGoogle Scholar

  • Leave a Comment